Applications of Switch-Mode Rectifiers on Micro-grid Incorporating with EV and BESS

نویسندگان

  • K. W. Hu
  • C. M. Liaw
چکیده

A switch-mode rectifier (SMR) can provide adjustable and well-regulated DC output voltage from the available AC source with good line drawn power quality. Depending on the input/output voltage transfer characteristics, the schematics, the operation quadrant, and control, SMRs possess many classifications and application. Typical potential application examples include grid powered motor drives, battery chargers, various power electronic facilities, micro-grids, and grid-connected battery energy storage system (BESS), etc. In micro-grids, the SMR can be employed as the AC generator-followed converter to yield better generating efficiency. The SMR operation of its grid-connected inverter let the grid-to-microgrid (G2M) operation be conduct‐ able in addition to the microgrid-to-grid (M2G) operation. As for the electric vehicle (EV), the bidirectional inverter can be arranged to perform G2V/V2G operations in idle case, wherein the SMR operation is made in G2V battery charging. To promote the application potential and improve the operation performance of SMRs, this article presents the operation controls and applications of SMRs in microgrid systems incorporating BESS and EV as supplemental facilities. First, the classifications, operation principle, and some key issues of SMRs are explored. Secondly, the configuration of the studied system is introduced. Third, the controls and operations of SMRs in micro-grid, wind generators, and grid-connected interface power converters are described. Then the ones in BESS (B2G/G2B) and EV are introduced. Finally, some conclusions and suggestions are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of New Transformerless dc-dc Converter With High Voltage Gain

In some industries applications such as fuel cells, we must use a high voltage gain dc-dc converters for increasing voltage, but, the conventional converters cannot provide the high voltage gain with increasing duty cycle and the converters efficiency is limited by the equivalent series resistances. For this reason, in this paper, a single switch transformerless high step-up dc-dc converter wit...

متن کامل

IoT Based Load Management of a Micro-Grid Using Arduino and HMAS

This paper aims to establish an Arduino and IoT-based Hierarchical Multi-Agent System (HMAS) for management of loads’ side with incentive approach in a micro-grid. In this study, the performance of the proposed algorithm in a micro-grid has been verified. The micro-grid contains a battery energy storage system (BESS) and different types of loads known as residential consumer (RC), commercial co...

متن کامل

Supervisory Control of a Hybrid AC/DC Micro-Grid with Load Shedding Based on the Bankruptcy Problem

In this paper, a supervisory controller is proposed to manage the power flow in a hybrid AC/DC micro-grid for both grid-connected and disconnected modes. When the hybrid AC/DC micro-grid is connected to the utility grid, power surplus or shortage leads to power trade between the micro-grid and the utility grid. In the grid-disconnected mode, the renewable power sources (wind and solar generatio...

متن کامل

Reactive Power Sharing and Harmonic Voltage Modification in Single Phase Island Micro-Grid with Drop Control

Abstract: When several parallel inverters are in islands operating mode, the droop control scheme is usually used to control the inverters. The droop control method enables the inverters of a Micro-Grid to control the voltage and frequency of the network in a decentralized regulation behavior. The drop control method also enables the inverters to share the required active and reactive powers of...

متن کامل

Microgrid Frequency Control Using Multiple Battery

Micro grids being a new developing technology operate in two distinct modes of operation, namely, the utility-grid-connected mode and the autonomous (or islanded) mode. In transition from the utility-grid-connected mode to the autonomous mode, the frequency of a micro grid can be seriously affected due to unbalance between power generation and power demand and at that moment, micro-sources may ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017